"When" on Macro-Connectome and Communicability

17'/06/20 Masanori Shimono

How "When" of Neurodynamics is determined?

"When" of Neurodynamics

e.g.1) M/N170 for M/EEG

e.g.2) M/P300 for M/EEG

Comparisons with anatomical networks are necessary!!

Liu, et al. (2002)

Chapman, Bragdon (1964), Shimono, et al. (2011)

"When" of Neurodynamics

e.g.1) M/N170 for M/EEG

e.g.2) M/P300 for M/EEG

Many paths should exist!!

Liu, et al. (2002)

Chapman, Bragdon (1964), Shimono, et al. (2011)

4

	5cm	EG
Space	1cm	G
Skin	3cm	
Scalp	3cm	
Dura	3cm	
	ARE	
	Shimono, Hatano (2010	5)

Various brain-recording technologies Resolution Range Brain ECoG Region wide ~1 cm LFP ~1 mm S/MUA Neuron Local ~1 µm 9

Evoked response & Spontaneous activity

Evoked response Spontaneous activity ECoG Blind-fold condition Neuronal Spikes Blind-fold condition

Evoked response & Spontaneous activity

ECoG (Evoked) vs. Spikes (Evoked)

ECoG can predict neuronal spike delays within evoked conditions.

Shimono, Hatano (2016)

14

Evoked response & Spontaneous activity

Trace Injection data

Kotter (2004) Bakker et al. (2012)

 $\tau_{(path index)(walk step)}$

A first Walk step: τ_{11}

Many paths exist!! $\tau_1, \tau_2, \tau_3, \tau_4, ...$

We categorized paths depending on Walk steps.

Shimono, Hatano (2016)

27

Shimono, Hatano (2016)

28

 $C_{delay}(n) = \alpha^n$ (n: walk steps)

29

 $C_{delay}(n) = \alpha^n$ (n: walk steps)

30

Communicability G score

(Communicability)=(Weight) × (Walk length)

$$G = \sum_{n=0}^{\infty} c_n A^n = \sum_{n=0}^{\infty} (\alpha A)^n \quad (c_n = \alpha^n)$$
$$= \frac{1}{1 - \alpha A}$$

$$e.g.) A^3 = \sum_{k,l} A_{ik} A_{kl} A_{lj}$$

Communicability can systematically quantify how longer walks contribute to the spread of information in network systems.

Estrada, Hatano, (2008), Estrada, Hatano, Benzi (2012)

Communicability and latency

Communicability and latency

e.g.) Age and P300

The contribution of indirect connections is ...

up to 5%.

... small?

Dinteren et al. (2014)

Communicability and latency

e.g.) Age and P300

The contribution of indirect connections is ...

up to 5%.

... small?

Is the gap between ages 45 and 60 small?

Dinteren et al. (2014)

The propagation speed

Shimono, Hatano (2016)

35

Optimal speed and Stochastic Resonance

From a computational modeling study

wilson-Cowan model. $\tau \frac{\partial x_i(t)}{\partial t} = -x_i(t) + \phi(I_b + 2\alpha C_{int}(t) - y_i(t)) + \varepsilon_i(t)$ $\alpha : \text{global coupling strength}$ $T_{ji} : \text{Delay} \quad T_{ji} = d_{ji}/\nu$ Girvan-Newman's method \rightarrow Two modules

> working point (*) is fixed between the 2 synchronization bumps

> > Transmission Velocity

Deco et al., (2009) PNAS

Optimal speed and Stochastic Resonance

From a computational modeling study

Deco et al., (2009) PNAS

Contributions

- 1. ECoG can show consistent latencies with ones of neuronal spikes.
- 2. Spontaneous activity can also predict latencies of neuronal spikes.
 - Then, structural constraint is essential!!
- 3. Contributions of indirect connections are allowed up to 5%.
- 4. Communicability explains the percentage.
- 5. Transmission speed in the macro-connectome is 1.0~1.5m/s.
 - This is the optimal speed predicted by a past computational model study by Deco et al.³⁸

QUESTIONS?

Article | OPEN

Efficient communication dynamics on macro-connectome, and the propagation speed

Masanori Shimono R Maomichi Hatano

Scientific Reports 8, Article number: 2510 (2018) doi:10.1038/v41598-018-20581-y Download Citation

Network models Network topology Neuroscience Received: 35 May 2007 Accepted: 22 January 2008 Published: 06 February 2008 Author Connection: 03 May 2018 Connection 03 May 2018 39

