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FCoG (Spontaneous) vs. Spikes




FCoG (Spontaneous) vs. Spikes




FCoG (Spontaneous) vs. Spikes

~100,000 routes (walks) for 5 path steps
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FCoG (Spontaneous) vs. Spikes




FCoG (Spontaneous) vs. Spikes




FCoG (Spontaneous) vs. Spikes

Walk Models
Shortest Decay Mean
Weight C




FCoG (Spontaneous) vs. Spikes

Walk Models
Shortest Decay Mean
Weight C

elay

The peak delays represent
delays of ECoGs.




FCoG (Spontaneous) vs. Spikes

Walk Models
Shortest Decay Mean
Weight C
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\ Spike timings

of neurons




Contribution of indirect connections
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Contribution of indirect connections
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Contribution of indirect connections
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Communicability G score

(Communicability)=(Weight) x (Walk length)
G = z c(n)AM = Z(aA)n (c(n)—a™)
n=0 n=0

1
1 —aA
e.g.) A’ =X AikAwAyj

Communicability can systematically quantify how longer walks
contribute to the spread of information in network systems.




Communicability and latency
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The propagation speed
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s cell density unitorm or non-uniform?

THE BASIC UNIFORMITY IN STRUCTURE OF
THE NEOCORTEX

by A. J. ROCKEL, K. W, MIORNSand T. P. 5. POWELL
(From the Depariments of Human Asatomy ond Biomathematics, University of Oxfoed)

INTRODUCTION

SevERaL quantitative studies have shown that the cell deasity may vary in dif-
ferent lamine and in different arcas of the neocortex in the same brain and between
different species (see Tower, 1954, Brody, 1955, Cragg, 1967). The cells are usually
most closely packed in layer IV, the density is high in the visual cortex and low in the
motor and in general the ncurons are more widely separated in larger brains. In an
clectron microscopic study of the motor cortex of arca 4 and of area 3b of the
somatic sensory area of the monkey (Sloper, 1973; Sloper, Hiorns and Powell,
1979) the number of ncuronal cell bodses was counted in a narrow width through
the full depth of the cortex from the pia 1o the white matter. Surpeisingly it was
found that despite the marked difference in the thickness of the cortex of these two
arcas, and their different cytoarchitecture and function, the absolute number of
neurons through the cortex was the same and the proportions of the two main cell
types, the pyramidal and stellate, were similar. A companson has now been made of
the number of celis through the entire thackness of the cortex in most of the major
structural and functional areas in the monkey and in several other species, ranging
from mouse to man. With the exception of area 17 of the visual cortex of primates
the figures are similar for the different arcas, and despite the marked differences in
the size of the brains the absolute number of cells through the thackness of the cortex
Bas been found 1o be constant in the brains of different animals. The reselts may
be of relevance to our understanding of the evolution of this part of the brain, and
perhaps to the question of the anatomacal basis of the functional columnar organ-
zation which s a feature of many arcas of the cortex (Mounicastle, 1957, 1978,
Hubel and Wiesel, 1962, 1977). A preliminary communication of the results has
already appeared (Rockel, Hiorns and Powell, 1974).

Rockel et al. (1980)



How cell density is non-uniform®

25+ 39 million /

Fvaluations in whole-brains are essential.
Collins et al. (2010) PNAS



Spatial decay model

’ Neuron density (x10%/mm?) ‘

' POSterior COrtey |

Cahane et al. (2011)



Network as an other “closeness”

Network-based mapping

Fruchterman, Reingold (1991)




Cell density and networks

Various network measures

, Anterior-posterior
Neuron density coordinate

Rubinov, Sporns (2010) Shimono (2013) Sci.Rep.




What is Participation Coefficient?

Participation Coefficient Modules/Communitie

Temporo-frotal
association

Parieto-frotal
association ,

High Participation Coefficient — Information integration - association regions.
Low Participation Coefficient — Information segmentation - primary regions

Gumera, Amaral (2007)



Global influence of Modules

Community all
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Temporo-frontal

Parieto-frontal
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Correlation
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Participation
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Shimono (2013) Sci.-Féep.
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Summary
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Neuron density (x10%/mm?)




Summary




Summary

Shimono (2013) Sci.Rep.




Various brain-recording technologies

Resolution

COG Region

~1 cm

LFP

UA Neuron

~1 um




Micro: Circuitry level
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Three types of networks

B Structural networks
A set of physical or structural (anatomical) connections linking
neural elements (Cajal, 1905: Fellman and Van Essen, 1991).

B Functional networks
Deviations from statistical independence between distributed

and often remote neuronal units (e.g. Gerstein and Perkel, 1969;
Singer and Gray, 1995)

B Effective networks

The networks of causal effects between neural elements
(Adertsen et al., 1989 Friston, 1994)



Spikes ~ tunctional networks

Neuronal spikes Effective connectivity
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Garofalo et al. (2009), Ito et al. (2011), Liner et al. (2011), Shimono, Beggs (2011)




cvaluation in computational models

& Predicting structural connectivity from effective connectivity
1
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Transfer Entropy is the current champion.

Garofalo et al. (2009) PLOS ONE lto et al. (2011) PLOS ONE



Complex networks

Multi-electrode recording

Patch-clamp method

/“\
/)

Song et al. (2009) PLOS Biol. Sunny, Shimono,,, Sporns, Beggs (2016) J.Neurosci.




Complex networks

Multi-electrode recording
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Song et al. (2009) PLOS Biol. Sunny, Shimono,,, Sporns, Beggs (2016) J.Neurosci.




Vlicroconnectome

- Beyond simple statistical properties
- The detailed design of the network organization

- Nodes are generally neurons
- As one many body problem



Common neighbor effect

Patch-clamp experiment
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Perin, Berger, Malkram (2009)

Multi-electrode array

Shimono, Beggs (2011)




Degree histogram

Occurance [log scale]

10 10
Degree [log scale]

Shimono, Beggs (2014) Cerebral Cortex
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There were opposite opinion before.

A synaptic organizing principle for cortical
neuronal groups

Rodrigo Perin, Thomas K. Berger', and Henry Markram?
Blue Brain Project, Ecole Polytechnigue Fécirale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Edited by Roger A. Nicoll, Universty of Califarnia, San Francisco, CA, and approved February 7, 2011 (received for review October 29, 20100

Neuronal dircuitry is often considered a clean slate that can be  tions. The first is that memory is stored in the configuration of
dynamically and arbitrarity molded by experience. However, when  the connectivity of neurons in an assembly and in the set of syn-
we investigated synaptic connectivity in groups of pyramidal  aptic weights of the connections; the second is that expericnce can
neurons in the neocortex, we found that both connectivity and  frecly mokd the network connectivity and synaptic weights,

synaptic weights were surprisingly predictable. Synaptic weights What is known about the network topology of cortical micro-

Cumulative Distribution

M| W
2 3&567810 2 335678100 2 34

i~ BRAIN FORUM 1
In-degree

: i No evidence for hubs or
a lattice-like organization of connections was found. .

Perin, Berger, Marklam (2011) PNAS




Rich club effect

How do hubs connect each other?

D O
Rich-club

Sunny Shimono,,, Sporns, Beggs (2016) J.Neurosci.



How do hubs connect each other?
W. Smith & S. C. Masmanidis
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At Osaka University

¢ OSAKA UNIVERSITY

Microconnectome reflects
global bi-hemispheric interactions

Akihiro Nakamura', Masanori Shimono'-2

1. Osaka University, Toyonaka, Osaka, Japan
2. Riken Brain Science Institute, Saitama, Japan




\Voving to Kyoto

https://twitter.com/i/web/status/797574312056098816 http://studio3264.doorblog.jp/archives/46074095.ht
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Connecting micro & macro

(a) Striped MRI (b) Connected 3D scan

(d) Staining

Ide et al. (2018) under review



Connecting micro & macro

Ide et al. (2018) under review
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